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Executive summary 

With its unique conductive and chemical properties, silver is an important industrial metal 

with integral roles in many electrical and electronic applications.  The ongoing revolution 

in green technologies, driven by the mainstream adoption and exponential growth of new 

energy vehicles (NEVs) and the continued investment in solar photovoltaic energy, should 

form an increasingly important part of industrial demand for silver in the future.   

This study is intended to inform Silver Institute members and the general public about the 

critical role silver has played and will continue to play in the ongoing green revolution, both 

within the electrical generation segment and the transportation and related charging 

infrastructure segments. It will provide a robust framework for evaluating future changes 

in silver demand within these two markets, focusing on the key macroeconomic, policy and 

technological views and changes required to bring about such a revolution.   

The key findings of this study are as follows: 

• The cost of installing and providing solar photovoltaic (PV) has fallen rapidly relative 

to other electrical energy sources over the past two decades, even with factoring 

out the effects of solar subsidies and taxes/penalties on nonrenewable energy 

sources. These trends are expected to continue over the medium-term, leading to 

an ever-increasing share in renewable energy generation and investment, led by 

both macroeconomic/cost considerations and public policy.  

• Solar energy uptake will grow most significantly in developing regions during the 

next decade, led by major policy-driven investments in domestic solar infrastructure 

within China and India.  Solar energy uptake is expected to continue growing 

strongly within the United States, despite some short-term uncertainty associated 

with recent tariffs on solar PV imports.  Within Europe, solar PV uptake is expected 

to decelerate through 2030, although renewable energy sources will continue to 

account for a growing share of regional electricity generation.  

• Although solar power will account for a growing share of global electricity 

generation, the amount of silver used per photovoltaic cell is expected to continue 

declining.  Thrifting, which is widely utilized across the full metals spectrum, has 

already brought the average silver loadings per generated kilowatt hour down to 

28.6 grams in 2017, driven mainly by continued advancements in dual printing 

processes, reductions in wafer thickness and finger width and, to a lesser extent, 

replacement of silver with other materials like copper.  CRU expects silver loadings 

in solar PV to continue declining through 2030, albeit at a slower pace than during 
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the past 10 years.   Moreover, it is important to note that silver’s unique conductive 

properties ensure that substitute materials will not be able to match it in terms of 

energy output per panel.  As a result, the pace of silver thrifting is expected to slow 

down considerably over the longer term, ensuring that the solar PV market will 

remain a key vertical for silver use in industrial applications. Ultimately this will lead 

to short term growth in silver demand in PV from 2018-2020, before thrifting and a 

reduced amount of PV capacity installed per year causes a decline in demand 

through the early 2020s, after which we expect demand to return to growth from 

2025 onwards. 

• In the transportation sector, spurred on by overwhelming policy support, as well as 

falling costs and greater understanding of the benefits of electric vehicles, new 

energy vehicles (NEVs), such as battery electric vehicles, (BEV), and plug-in hybrids 

(PHEVs) will account for an ever-increasing proportion of global vehicle sales. 

Based on our electric vehicle model, CRU estimates that BEVs and PHEVs may 

collectively account for as much as 17% of global car sales while hybrids account 

for an additional 20% of sales by 2030. 

• The incremental growth in silver loadings within new energy vehicles will have a 

meaningful impact on future demand for silver from the automotive segment.  Within 

vehicles, silver is primarily used in electrical contacts, which connect electrical 

components with one another.  The automotive battery market remains a 

commercially untapped opportunity for silver-zinc batteries.  Due to cost pressures, 

however, current trends indicate that automakers and their suppliers will continue 

to invest in lithium ion technology with nominal investment in silver-bearing battery 

materials. 

• The value proposition of wireless inductive charging ports and stations will increase 

substantially if the successful development and mainstream adoption of 

autonomous vehicles succeeds.  At the moment, inductive charging for the 

transportation sector is gaining traction in electric buses used by public 

transportation agencies, and there are signs that the next major market for this 

technology will be electric trucks used by regional freight companies. CRU expects 

the adoption of inductive charging stations by the household market to provide 

meaningful growth in silver demand only over the long-term, as plug-in charging 

remains the favored technology for the current generation of EV owners.   

• Even so, the technology behind inductive power transfer has come forward in leaps 

and bounds in the past decade, turning a once-impractical technology into a method 

of transferring power that is convenient, quick and increasingly energy-efficient. 

This is reflected in its newfound commercialization, with inductive chargers 

boasting enough technological advancement and consumer convenience to 
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generate sales despite their considerable premium.  There are clear benefits to the 

technology that could revolutionize certain areas of the transport sector in terms of 

both profitability and convenience, but a substantial reduction in price is needed 

before these areas can be properly explored. If the costs of these technologies do 

come down substantially, however, the transport sector is sure to bring a silver 

lining to the long-term shifts in the energy market. 

• In total, CRU estimates the demand for silver in the three key ‘green’ applications 

covered in this study to be in the range of 110-140 million ounces each year from 

2018 to 2030, with growth in both automotive and solar applications bolstering 

demand in the longer term, while nuclear provides a much smaller, but nonetheless 

positive, benefit.

 

 

 

 

 

 

 

Figure 1  Demand for silver in ‘green’ applications covered in this study 

 

Data: CRU, SI,  

*Auto electrical excludes silver consumption in defogging applications (conductive pastes) 
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1. Power 

World electricity consumption reached 25,000 terawatt-hours (TWh) in 2017, growing at an 

average annualized rate of 3.2% from 2007. Terawatt-hours is a measure of electricity 

consumption, equal to 1,000,000 megawatt-hours. For reference, the average US household 

consumes about 11 megawatt-hours per year, according to the US Energy Information 

Administration. This rate can be expected to slow to 2% to 2030, with global consumption reaching 

31,000 TWh in that year. As Figure 2 shows, this slowdown will continue to occur in developed 

areas, such as Europe, North America and North East Asia, as energy-efficient technologies 

become more widespread; meanwhile, China will continue its fast-paced growth and will be joined 

by India, South East Asia and sub-Saharan Africa, as improvements in quality of life and rapid 

economic growth lead a burgeoning middle class in these areas to not only consume more energy 

in general, but also rely more on electrical appliances over traditional sources of energy. 

Fossil fuels continue to dominate electric generation in most markets, with coal, oil and gas 

accounting for around two-thirds of global electricity production in 2017. However, as the issue of 

Figure 2  Forecast increase in electricity consumption by region 

 

Data: CRU; CHN-China, IND-India, NAM-North America, BRZ-Brazil, NAD-North Asia Developed, CIS-Russia and the CIS region, 
WEU-Western Europe, REU-Rest of Europe, SEA-Southeast Asia 
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pollution grows in significance in the wake of the Paris Agreement, governments are increasingly 

looking to implement policies encouraging low-carbon sources of power generation, causing 

demand from these sources to decline. While the Paris Agreement is not the only policy framework 

that drives shifts in electricity consumption, it is one of the more prominent overarching policies 

with global significance.  There are also numerous noteworthy energy policies at the national level 

that play a significant role in renewables energy uptake, as outlined in further detail below. 

The degree to which coal cedes market share to other sources will depend greatly upon various 

regional factors; environmental issues of course offer a raft of great and worthy incentives for the 

transition from coal to renewables, but the realities of providing cheap and reliable power are often 

a stronger motivation. Demand for coal may have fallen between 2014 and 2016 in China, for 

example, but it can be expected to once again rise modestly in the coming years as efficiency 

gains and a lower demand for domestic heating are counteracted by an increased demand for 

centralized power. 

This is a trend in other developing countries, who are more likely to choose to address their carbon 

emissions through consolidating coal-fired plant assets, increasing its efficiency, and investing in 

carbon capture & sequestration (CCS) technology. India is an example of this, with most of the 

nation’s extravagantly-named Ultra Mega Power Projects (UMPPs) being coal plants, as the 

country’s rapid growth in baseload power needs has required a great deal of additional coal 

capacity to quickly and affordably meet demand. 

But where renewables once struggled to compete in markets where the priority is the cheap and 

rapid expansion of an emerging economy’s electric infrastructure, new sources of energy are 

making headway, thanks to both plummeting costs and rapid lead times. As Figure 3 

demonstrates, the global average levelized cost of electricity (LCOE) for new solar project has 

approached and is surpassing that of an average coal-fired power plant (U.S.$40/MWh – although 

in nations with large coal reserves or where thermal coal is produced domestically, the LCOE can 

be as low as U.S.$27-32/MWh). This has sparked interest in developing nations which would once 

have never considered a move to renewables – indeed, a fair number of Indian UMPPs are solar 

projects, with the nation expecting to boast total solar capacity of 100 GW by 2022. 

 

 

 

 



  

  

 

 
Silver Institute – The Role of Silver in the Green Revolution 

July 2018  Page 9 

 

The proliferation of renewable sources of energy, then, is far from being the pipe dream it once 

was – it is now a cost-effective means of energy generation, unfettered by price concerns. This is 

not to say there will not be challenges, even in the developed world – a comparative dearth of 

wind and sun in north-east Asia will cause coal demand in Japan and Korea to rise as nuclear 

plants continue to close in the wake of the Fukushima disaster; varying levels of political support 

in different regions, will no doubt continue to arise.  Despite these roadblocks, the long-term 

outlook continues to look positive for all carbon-neutral sources of energy. 

This low-carbon transition represents an opportunity for growth for two sources of electricity which 

consume silver: solar photovoltaic (PV) and nuclear energy. The need for silver in the generation 

of solar energy is widely publicized, and with good reason – the conductive silver paste found on 

the front and back of most PV cells represents the potential for a substantial increase in global 

silver demand, although the effects of thrifting pose a perennial risk. Silver finds a further use as 

a neutron absorber in the rod cluster control assemblies (RCCAs) that are used to regulate the 

rate of fission in some designs of nuclear reactors, and while the demand is small, not to mention 

reliant on an energy sector that has faced challenges since the 2011 Fukushima disaster, the 

Figure 3  Solar and coal plant LCOEs 
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global necessity for carbon-neutral energy represents an opportunity for growth that merits a brief 

exploration. 

This chapter will therefore chart the recent policy and technological factors that affect both the 

uptake of solar demand and the degree to which it may translate into silver demand, taking into 

account the potential adverse effects of both thrifting and increasing cell efficiency; it will then 

discuss the likelihood of a significant reversal in fortunes for nuclear energy, and whether this will 

have any substantial effect on silver consumption. 

1.1. Solar 

This section will review solar photovoltaic (PV) uptake on a regional level, followed by discussion 

of historical and forecast silver intensities in PV equipment.  

Demand for renewables is expected to increase to 4.5 times its current level by 2030, expanding 

the sector’s share of global electricity generation from 6% to 14%, as shown in Figure 4. Given 

the nature of renewable energy, the ratio of wind to solar demand is dependent upon geographic 

and climatic factors, meaning solar is unlikely to dominate the renewables sector in the 

foreseeable future; nonetheless, as solar’s cost advantage becomes more pronounced, its share 

of the renewables sector will increase from 33% to 48% by 2030. 

Figure 4  Global electricity generation by type 

 

Data: CRU 
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As Figure 4 shows, more than 1,100 GW of additional installed capacity is required to fulfill 

demand by 2030. Most of the additional solar capacity moving forward is expected to be installed 

in North America (in particular, the US) and China; these regions account for 22% and 32% of 

future capacity increases respectively. Other areas that claim high shares of future capacity are 

India (15%), Europe (14%), and North East Asia (12%). There is a comparative lack of interest in 

solar power in other parts of the world, often despite favorable climates such as in parts of Africa 

and South America; this reflects the pervading truth that for many developing countries, coal 

remains the quickest and often cheapest way to meet the sizeable baseload demand required by 

a rapidly growing consumer base. 

1.1.1. China 

As the largest market for photovoltaics and world leader for new installations, China shows no 

signs of stemming its impressive demand for solar power. Spurred on by the twin drivers of 

economic growth and considerable policy support, Chinese solar capacity is expected to rise to 

two and a half times its current level of 163GW to 488GW by 2030. 

A large part of this rise is simply in response to the energy demands associated with China’s 

continued development. China’s GDP growth may be expected to slow from 6.9% in 2017 to 2.8% 

Figure 5  Historical and forecast solar capacity by region, 2006-2030 

 

Data: CRU 
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by 2030 as it continues its transition into a developed nation, but it will nonetheless require 

significantly more electricity to achieve. China is at the tail end of a major demographic shift from 

a mostly rural, low-income population to an urbanized, high-income population, and our internal 

economics team forecasts 70% of the Chinese population will live in cities by 2030; the associated 

energy demand is expected to increase electricity consumption to 2238 TWh p/y by 2030. 

Nonetheless, the fact that PV solar power is predicted to account for 22% of China’s additional 

consumption is testament to the resoluteness of recent energy policy and their reputation for 

meeting similar targets in the past. Since the introduction of the Golden Sun incentive scheme 

from 2009-2011, which provided subsidies to PV power generation projects with the aim of 

increasing installed PV capacity to 500MW, China has favored solar energy as a means to adhere 

to its goal to keep carbon emission levels at bay despite its increased demand for electricity. The 

current Five-Year Plan is no exception; CRU estimates they will trounce their goal of 105GW 

installed solar capacity by 2020 by a resounding 81GW. With the legwork already done in 

establishing a solar industry – seven of the top ten PV manufacturers by market share are Chinese, 

representing a total shipped capacity in 2017 of 23GW – all macroeconomic and political factors 

indicate that China’s solar capacity will continue to grow at an impressive rate to reach 488GW by 

2030. 

1.1.2. North America 

North American solar demand is mostly concentrated in the US, which in 2017 installed 22GW of 

new solar capacity. Indeed, the US has seen a strong rise in solar capacity over the past few 

years, with various federal policies since 2008 supporting the research and development of solar 

technology. However, unlike other regions, there is no mandatory nation-wide renewable energy 

target, although the state of California has pledged to generate half of its electricity from renewable 

sources by 2030. More recently in May 2018, the State of California announced new policies that 

require all new housing developments to incorporate solar power by 2020. 

The inauguration of Donald Trump as president in 2017 may have spelled a shift in energy policy, 

but it remains to be seen what effect this will have. There has been some concern over whether 

Trump’s much-publicized support for coal power generation may affect solar uptake, be it through 

a fall in demand following the US’s withdrawal from the Paris Agreement in 2020 or the possibility 

of cutting solar subsidies in favor of investment into carbon storage research.  

So far, the largest effect the Trump presidency has had on the solar industry came in January 

2018, when the introduction of 30% tariffs on PV panels threatened to increase consumer prices 
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and slow the previously rapid uptake of solar power. This has caused a great deal of consternation 

within the market; many analysts have revised down their figures for new installed capacity by as 

much as 15% through to 2021, and the American panel manufacturer SunPower, who make the 

majority of its panels abroad, have predicted an annual loss of U.S.$50m from the move. 

It remains to be seen how much of an effect this tariff will have on American solar uptake. A similar 

tariff brought in by the EU in 2013 had little effect on installation growth which is already declining 

in that region, but US installers and consumers face a greater challenge now than their 

counterparts in the EU did in 2013: the market share of imports in the US today is 80% compared 

to 33% in the EU in 2013, and the European solar industry was at the time much more mature in 

comparison to China than the US is now. 

In any case the tariffs have caused a shake-up in the market as domestic solar installation 

companies scramble to ensure a tariff-free supply: the Chinese manufacturer JinkoSolar, for 

example, has announced the construction of a factory in Florida, while SunPower has applied for 

an exemption and acquired SolarWorld Americas, a rival with a greater manufacturing capacity in 

the US. It will no doubt take a few years for the market to settle, during which time solar uptake 

may be negatively impacted, but these tariffs are unlikely to affect the growth rate of the solar 

industry in the long term. Solar power still has the perennial and conclusive advantage of rapidly 

falling costs, a fact that even the fossil friendly current Republican administration has recognized, 

pledging U.S.$105 million to the development of solar technologies and their integration into the 

grid in April 2018.  

Figure 6  Estimated LCOE for new generation resources, 2015-2018 
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As Figure 5 demonstrates, the average estimated levelized cost of electricity (LCOE) of new solar 

projects in the US is far below new coal projects and on a parity with natural gas when tax credits 

are taken into account. Coal’s relative costliness may be due to a reinterpretation of the Clean Air 

Act §111b, which in 2015 required coal plants to have carbon capture & sequestering (CCS) 

technologies, but current solar costs have proven to be lower even than historical coal costs in 

real terms, with the LCOE of coal without these requirements still being 33% more expensive than 

solar power, even when tax credits are removed and a particularly pessimistic price adjustment 

for the new tariff is taken into account. It is worth keeping in mind that the likelihood of the current 

US government removing CCS requirements from new coal projects is particularly low, given 

existing policy momentum, Trump’s campaign rhetoric on ‘clean coal’ and subsequent investments 

made by the Department of Energy into the technology. 

1.1.3. Europe 

The member states of the European Union (EU) continue to make strides towards meeting their 

target of fulfilling at least 20% of its total energy needs with renewables by 2020 and 27% by 2030. 

Although CRU believes it will be a close call whether the 2020 target is met, our estimates show 

that the 2030 target will be comfortably exceeded, with the bloc achieving a renewable share of 

30% by this time. This would seem to corroborate a recent (February 2018) report from the 

International Renewable Energy Agency (IRENA) stating that a new target of 34% by 2030 would 

 

Data: U.S. Energy Information Administration 
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be technically feasible, and it is possible that the goalposts may be moved forward even further in 

this timeframe. 

However, much of the groundwork for this increase has already been laid, with Europe already 

boasting total renewables capacity of 280GW, of which solar accounts for 116GW. Given the 

fundamentally intermittent nature of both wind and solar, there is currently a limit to the extent to 

which a grid can rely on renewables without risking gaps in coverage; moreover, for many northern 

European nations, wind remains the better option for power generation. Because of this, Europe 

is likely to lose its position as the world leader in solar capacity (as a proportion of its total energy 

generation) sometime in the next year, although solar capacity is expected to continue growing an 

annualized 11% to 275 GW by 2030. 

1.1.4. India 

India smashed its original target of 20 GW installed solar capacity by 2022, achieving it four years 

ahead of schedule in 2018. These plans have since been revised, with the Indian government now 

aiming for a total of 100GW installed capacity by 2022. This may be an ambitious target, but it is 

nonetheless achievable, with CRU predicting that installed capacity will in fact surpass 100GW by 

a modest but not inconsiderable margin. In addition to this, there is a large-scale initiative to 

develop off-grid solar energy for rural and impoverished areas. Though most applications in this 

area, such as water heaters and solar cookers (appliances that cook or heat food using the thermal 

energy from directed sunlight), will rely on concentrated solar power (CSP), some will require small 

PV cells, such as lanterns and streetlights in areas with low accessibility. 

Figure 7  Share of solar capacity by region, 2017 and 2030 

 

Data: CRU 
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There are few limits to the potential growth of India’s solar industry moving forward. The current 

Prime Minister, Narendra Modi, has demonstrated a commitment to solar power both at home and 

abroad, and is the chief architect of the International Solar Alliance (ISA), an association of 121 

countries that seeks to further the exploitation of solar energy in nations that lie between the Tropic 

of Cancer and the Tropic of Capricorn.  

Alongside such favorable international and policy support, the Indian solar industry has a 

considerable advantage conferred by the twin drivers of high levels of solar energy insolation and 

perhaps the largest potential consumer base worldwide. Total annualized electricity demand is 

expected to almost double from 2017 to 2030 from 1,625 TWh to 3,187 TWh as connection to the 

national grid becomes the norm in the nation’s growing urban areas; moreover, the majority of the 

country’s landmass receives an average annual solar irradiance of over 1900 kWh/m2, meaning 

solar power can be delivered more cheaply as less solar capacity is needed for the same amount 

of power. Off the back of this, solar power has become highly cost-competitive, with some new 

projects in 2017 being auctioned for as low as ₹ 2.44/kWh – significantly cheaper than the average 

LCOE of coal in the region. 

We therefore expect installed solar capacity to rise to almost ten times its current level by 2030, 

to 196 GW. Half of this is assumed to come as a direct result of Modi’s commitment to reach a 

capacity of 100 GW by 2022; in the absence of any evidence for further policy after this point, 

growth is expected to be somewhat slower from 2022 to 2030, although there is a distinct 

possibility that policy support may remain, and solar uptake may be higher than forecast from 2022 

onwards. 

1.1.5. Silver demand in PVs 

The threat of thrifting in PVs has loomed over suppliers since the industry was in its nascence, 

causing demand for silver within the solar industry to rise at a considerably slower pace than PV 

demand. As Figure 8 shows, this trend is only set to persist as manufacturers continue to reduce 

the silver content of their panels as a cost saving measure. However, the rate of silver reduction 

is beginning to slow; having fallen from 400mg to 130mg per cell between 2009 and 2016, CRU 

forecasts silver content to begin levelling out at 65mg around 2028.  With average cell output 

expected to rise from 4.7 watts in 2018 to 6.0 watts by 2030, continued thrifting amounts to roughly 

10.5mg of silver required per watt of generation capacity by 2030. In Figure 10 below, we have 

indexed total demand for solar cells (as measured by number of cells) to silver demand from the 

solar PV market (as measured by mg of silver per cell) starting from a base year of 2011.  Although 

the gap widened considerably from 2012 to 2017 in line with thrifting trends, we expect this gap to 
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widen at a much slower pace during the latter half of our forecast as the performance/efficiency 

losses from using less silver begin to outweigh the benefits of lower manufacturing costs.   

The main driver for this thrifting is the price of silver; when it more than doubled between 2009 and 

2011, the amount of silver in the average PV cell halved from 4.0g to 2.5g. The rate of thrifting 

then halved between 2012 and 2017 as the price of silver fell from U.S.$31 to U.S.$17 per ounce. 

CRU forecasts show the price of silver is unlikely to rebound to the record-high levels reached in 

2011, playing a role in the decelerating rate at which thrifting is expected to continue. Nonetheless, 

the fact that manufacturers continue to reduce their silver loadings is symptomatic of a highly 

competitive market in which prices are consistently being driven down. Thrifting continues to be 

spurred on by new manufacturing processes, such as dual printing, where the fingers and busbars 

of a PV cell are printed separately, allowing busbars to be printed with a paste with a lower silver 

content it is also made possible by the reduction of finger widths. Furthermore, it is important to 

note that thrifting and material substitution is a trend that is not inherently unique to silver but is 

rather present across the full commodities market; Downstream manufacturers constantly strive 

to lower raw material costs, whether it is related to aluminum substitution for copper in cable and 

wiring or plastics substitution for tinplate in food container production. It bears repeating that silver 

has remarkable electroconductive qualities unmatched by other metals, and there is a physical 

limit on the ability of solar PV manufacturers to continue reducing silver loadings before 

performance and efficiency losses begin to outweigh whatever benefits are achieved from lower 

raw material costs. 

Figure 8  Indexed demand for PV cells and 

silver in solar PV 

 

Data: CRU, SI. Index shows changes relative to 2011, which is 
marked as 1.00 on the chart 
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Figure 9  Forecast silver consumption per 

generation capacity 
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As in other applications, there is also a modest risk that silver may be substituted with less 

expensive materials, such as copper. However, substitute materials have had difficulty competing. 

Silver has the lowest electrical resistance among all metals at standard temperatures, meaning its 

substitutes cannot hope to match it in terms of energy output per panel; the savings made in 

substitution may therefore be offset by the increased number of panels needed to match capacity. 

Moreover, due to technical hurdles, such as the reduced adhesiveness of front pastes containing 

high amounts of copper or aluminum, non-silver PVs tend to be less reliable and have shorter 

lifespans, meaning they are some way off in terms of commercial development and are unlikely to 

gain significant market share between now and 2030 as the broader market heads toward more 

compact and efficient solar panel equipment. 

However, efficiency gains are expected to prolong the downward trend of silver loadings per watt 

of capacity, which may prove to be enough to tip silver demand in the PV sector into a period of 

deceleration in the coming years. The amount of solar energy that the average panel can convert 

into electricity currently stands at about 19%, up from 17% last year; some market leaders, such 

as SunPower in the US, are reporting efficiencies for commercially available cells of up to 22%. 

With this in mind, CRU believes average efficiency may rise to 25% by 2030, meaning a reduction 

in the number of panels needed to produce the same amount of energy of 24%. 

These two factors – thrifting and efficiency increases – may decrease silver loadings enough that 

it would take a significant increase in solar capacity’s growth rate to keep silver demand from 

Figure 10  The price of silver relative to silver intensity in photovoltaic cells 
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slipping – an increase that the industry as it currently stands will not be able to deliver in the long 

term. Increased demand from policy support in India will buoy silver demand, keeping it at a stable 

level until the end of the decade, and the rate of solar uptake will continue to grow at a not 

inconsiderable pace, only slowing past 2030; however, as volumes increase the need for both 

increased efficiency and decreased cost will continue to drive silver demand per GW down until 

2028. With this in mind, CRU believes that 2017 represented a probable peak for silver demand 

in the PV industry, but a deceleration in thrifting and continued additions to solar generation 

capacity will continue to support silver consumption, particularly in the longer term. We expect 

annual silver demand in PV cells to range around 70-80 million ounces in the next few years, 

before declining to approximately 50-55 million ounces in the mid-2020s. We expect that it will 

then return to growth, reaching 66 million ounces by 2030. 

1.2. Nuclear power 

While silver has relatively well-known uses in solar power and industrial catalyst applications, an 

often overlooked application for silver is nuclear power, where silver is used in combination with 

other metals to produce control rods for nuclear reactors.  This section with first outline our market 

Figure 11  Forecast demand for silver in PV cells 
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outlook for global and regional nuclear generation informed by recent developments and policy 

announcements, followed by commentary on current and anticipated applications for silver in 

nuclear power generation.  

The 2011 Fukushima Daiichi disaster was a substantial blow to the global proliferation of 

commercial nuclear energy, which the Japanese government to immediately suspend all nuclear 

operations and encouraged other countries with nuclear power capabilities to reassess their 

reliance on nuclear energy. While Japan has since reopened only 6 of the country’s 53 reactors, 

and resumed construction on two more in Oma and Shimane, both public opinion and prevailing 

policy remain strongly anti-nuclear, and the country is unlikely to see installed nuclear capacity 

rise to anything near pre-2011 levels. 

A similar withdrawal of public support, and resultant policy changes, have materialized in a number 

of developed nations following Fukushima. Germany, Belgium and Switzerland – where a ban on 

the construction of new reactors has even been enshrined in the Constitution – have all announced 

plans to phase out nuclear power fully in the wake of Fukushima, and France, the largest producer 

and traditionally most stalwart proponent of nuclear power, passed the Energy Transition for Green 

Growth bill in October 2014, setting a target of lowering nuclear contribution to electricity supply 

to 50% in 2025 from its current level of 75%.  These announcements perhaps signal the beginnings 

of a greater trend away from nuclear and towards renewables in these regions. 

Elsewhere in the developed world, however, governments have begun to look more favorably on 

nuclear power. In the US, for example, Donald Trump has voiced strong support for nuclear 

energy; this may be yet to materialize as policy, but there is a chance that he may seek to reverse 

the fortunes of American nuclear power after the financial collapse of Westinghouse (a historically-

significant global supplier and contractor of nuclear power plant technology and infrastructure) last 

year.  

On the whole, however, developed countries remain ambivalent over nuclear power, with many 

opting for other non-fossil fuel energy sources like wind power or solar to meet Paris Agreement 

targets. Developing countries, however, are poised to embrace it, with especially strong growth in 

nuclear capacity seen in China, which alone accounts for 38% of all pressurized water reactors 

(PWRs) currently in construction and 43% of all planned PWRs. Other regions with high uptake 

are the rest of Asia, which accounts for 18% of under construction and 17% of planned PWRs, the 

Middle East, which claims 9% and 23% respectively of under construction and planned PWRs, 

and Eastern Europe, which is accounts for 20% and 8% respectively. 
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For nations such as China, India and Pakistan, nuclear energy offers a way to seek to grow and 

develop with a limited carbon footprint; the potential energy capacity that nuclear power can offer 

means that these nations can provide for a large and growing population while curbing air pollution 

levels. Several other are also in the planning stage of nuclear development, especially in the 

Middle East: Turkey, Jordan, and Saudi Arabia, as well as Indonesia and Vietnam, are planning 

to make their first forays into nuclear energy in the coming years. 

Despite current opposition, CRU expects nuclear capacity to reverse its recent decline and to 

return to a steady growth globally over the coming years; although ageing reactors in the West 

are increasingly being replaced with natural gas or renewable sources, or even having their 

lifespans extended by up to 100 years in some cases, the harnessing of nuclear power for 

commercial energy production remains a matter of national prestige for developing countries. 

 

 

 

Figure 12  Number of PWR reactors by region 

 

Data: World Nuclear Association 
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Figure 13  Global nuclear capacity 

 

Data: CRU 

Figure 14  Total nuclear power generation capacity by region 
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1.2.1. Silver demand in RCCAs 

Silver demand in the nuclear sector is largely limited to its use in control rods. The rod cluster 

control assemblies (RCCAs) are inserted into the reactor to control the rate of fission, and as such 

must be made of a material which is: capable of absorbing neutrons without undergoing nuclear 

fission itself, has a high mechanical strength, and is resistant to corrosion. Common elements 

used include cadmium, boron, carbon, cobalt, silver, hafnium, gadolinium and europium. 

The two most common materials used are boron carbide and an alloy which is 80% silver, 15% 

indium and 5% cadmium (Ag-In-Cd). The material used largely depends on reactor design, with 

most designs favoring the use of boron carbide, including pressurized heavy water reactors 

(PHWRs), gas-cooled reactors (GCRs), boiling water reactors (BWRs) and light water graphite 

reactors (LWGRs). Typically, Ag-In-Cd rods are found in pressurized water reactors (PWRs). 

However, PWRs make up the clear majority of commercial reactors globally, accounting for 64% 

of operational reactors and 84% of those under construction in 2017. Other designs tend to be 

more regional variants, with PHWRs being favored in Canada, GCRs almost exclusively in the 

U.K, BWRs in the U.S, Taiwan and Japan, and LWGRs – of which the most famous is Chernobyl 

4 – in ex-Warsaw Pact nations. Because of this, the majority of RCCAs – especially those under 

construction for use in new reactors – are 80% silver by weight, potentially representing a 

respectable chunk of future silver demand, should global policy call for a widespread uptake of 

nuclear power. 

 

Figure 15  Global number of reactors by design 

 

Data: CRU 
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1.2.2. Drawbacks for silver demand 

Nonetheless, however strong the global pipeline for nuclear capacity may be, there is no 

guarantee that this will translate into a noteworthy rise in silver demand, not only because each 

reactor uses only a small amount of silver, but because an RCCA has a low rate of replacement, 

since it catalyzes nuclear reactions rather than being consumed in the reaction. Therefore, the 

driver of silver demand in this sector is the continued addition of new nuclear capacity, as existing 

facilities will only have minimal ongoing silver demand once constructed. 

The average silver content in a reactor can vary widely with nuclear generation capacity, which 

can be anywhere between 0.3GWe (Chashma, Pakistan) and 1.66GWe (Taishan, China); 

however, the average capacity is 1GW, and more than 56% of PWR reactors are between 900 

and 1.2GWe in capacity, utilizing an average per reactor of 40 RCCAs containing 20 individual 

rods. This amounts to roughly 71 thousand ounces  of Ag-In-Cd, or 56 thousand ounces of silver. 

Moreover, one of the advantages to using Ag-In-Cd rods over relatively inexpensive BC4 is their 

durability. Even though Ag-In-Cd rods are liable to some degradation over time – mainly due to 

cracks in the cladding caused by swelling from the absorption of neutrons – they are not designed 

to be ‘used up’, nor is it often necessary to replace them. Estimates put their lifetimes at 14 years 

in a control bank and 22 years in a shutdown bank. Even assuming a high silver demand scenario 

in which all PWRs replace all rods every 14 years, the annual silver consumption of the commercial 

nuclear industry would have represented 1.2 million ounces of global annual silver demand, 

doubling to 2.3 million ounces in 2030. This is also ignoring the occurrence of thrifting: some new 

Stage IV reactors are being equipped with control rods that are boron carbide for the top 60% of 

their length and Ag-In-Cd for the bottom 40%. 

Figure 16  Global annual silver demand in commercial nuclear energy 

 

Data: CRU 
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The role of nuclear power in the green revolution will therefore have a limited effect on total 

industrial silver demand; even in an optimistic scenario, where silver demand doubles from 1.2 

million ounces to 2.3 million ounces per year by 2030, nuclear energy would still represent less 

than 1% of industrial silver demand. 

2. Transportation and related infrastructure 

A pervading theme of both the green revolution and international development in general is how 

energy is being consumed increasingly in the form of electricity. Where families in now-developed 

areas once burnt coal for heating, cooked on wood stoves, and lit their homes with gas lamps, 

they now fulfill most of their energy needs through electricity with only certain needs being met via 

natural gas or propane; likewise, developing areas will come to rely less on these traditional 

sources and more on electricity in the coming decades. This transition has been key to pollution 

control from the very beginnings of environmental policy; a cornerstone of the UK’s 1956 Clean 

Air Act, for example, was the banning of coal fires for residential heating in urban areas in favor of 

the introduction of the hot water convection radiators seen today. 

One area of consumption that has resisted this transition thus far, however, has been transport. 

The electrification of the transport sector has always faced the fundamental problem that a 

physical connection to a grid compromises a machine’s mobility, with solutions traditionally only 

Figure 17  Total silver demand in the solar and nuclear sectors  

 

Data: CRU 
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being in place in cases where the mode of transport in question travels along a fixed route – for 

example, trains, trams and trolleybuses. This has left the internal combustion engine (ICE) – a 

century-and-a-half old technology – with no viable alternative, especially for private modes of 

transport where consumers expect full mobility. 

Although other sectors, such as communication, have solved this issue with the use of batteries 

for electricity storage, the sheer amount of energy involved in travelling by car has traditionally 

been beyond the scalability of lithium-ion battery technology. However, newer generations of 

battery material technology (e.g. the types of metals or materials used to create the cathode 

components of the battery) have come with increased power densities and rapidly plummeting 

costs, meaning electric cars are now able to not only fulfill the needs of most car owners, but also 

compete in price with traditional ICEs.  The diagram includes our view on the total cost of 

ownership1 for three types of vehicles sold within North America: a traditional gasoline-powered 

vehicle, conventional hybrid (HEV) and a battery-powered electric (BEV).  BEVs represent a 

significant upfront cost but have lower maintenance and charging expenses over the lifetime of 

the vehicle. We believe that perceptions of the total cost of ownership are one of the key drivers 

of electric vehicle adoption by both the household and commercial markets.  

                                                
1 Total cost of ownership includes initial purchase price, plus fuel costs, plus maintenance costs, over the 
full lifespan of a vehicle 

Figure 18  Forecast total cost of ownership for BEVs vs ICEs within North America 

 

Data: CRU, *Includes the effects of subsidies and weighted-average costs of initial capital investment, maintenance costs and costs 
of electricity and/or gasoline consumption.  Data only for North America.  
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Recognizing this as an opportunity to curb pollution in urban areas, governments across the globe 

have included policies that favor the uptake of electric vehicles (EVs) into their broader strategies 

to tackle climate change. China, the largest car market in the world, has introduced a series of 

policies on the issue which have gradually moved from incentivizing consumers to buy electric to 

punishing manufacturers who fail to offer EV models. 

The logical conclusion of this gradual policy change is an effective ban on the sale of new ICEs. 

A few years ago, such a prospect would have been deemed outlandish; however, China would be 

merely joining a host of other nations that have already made the commitment to phase out the 

purchase of ICEs by a certain date, including Norway (2025), Germany, India and the Netherlands 

(all 2030), the UK and France (2040), and seven U.S states (2050). 

Spurred on by this overwhelming policy support, as well as falling costs and greater understanding 

of the benefits of electric vehicles, new energy vehicles (NEVs), such as battery electric vehicles, 

(BEV), and plug-in hybrids (PHEVs) will account for an ever-increasing proportion of global vehicle 

sales. CRU estimates that by 2030, NEVs may account for as much as 17% of global car sales, 

with hybrids accounting for an extra 20%. 

 

 

 

 

Figure 19  Chinese EV policy 
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This uptake is likely to bolster the pre-existing trend of increasing silver consumption in the 

automotive industry. Silver’s high electrical and thermal conductivity and resistance to corrosion 

make it an ideal material for use in electronics, and as cars demand more and more electricity to 

fulfill certain on-board functions, so too does the industry demand an increasing amount of silver 

for the manufacture of electrical contacts and motor control switches. 

The outlook for silver demand in the transportation sector looks even brighter when it is taken into 

consideration that the related infrastructure needed to facilitate a widespread proliferation of BEVs 

and PHEVs may also require large amounts of silver. A potential gamechanger for transport 

markets is the use of inductively coupled power transfer (ICPT) technology to wirelessly charge 

vehicles through the use of silver-plated induction coils.  

This chapter will evaluate the increasing use of silver contacts and address both the economic 

and technologic viability of ICPT’s use in BEV charging infrastructure. These two areas both have 

the potential to greatly impact silver demand in the coming decades. 

 

 

Figure 20  Total global light-duty vehicle demand by powertrain  

 

Data: CRU 
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2.1. Silver in electrical contacts 

Silver has been a ubiquitous presence in all cars since the propagation of electric starter motors 

and headlamps in the 1920s. Since then, electrical power has superseded other forms of energy 

in the fulfillment of more and more functions over time; from the introduction of electric switches 

to replace crank-handled window controls to the proliferation of onboard diagnostic computers and 

entertainment systems, the increasing sophistication of automotive technology has required larger 

and larger silver loadings. 

The modern car therefore already relies much more heavily on electricity than it used to; where 

an average car once relied on electrical power for only the starter, engine control unit, lighting 

system, and a few other minor functions, even the most basic modern ICE cars use the vehicle’s 

onboard battery system for a host of different functions, such as anti-lock braking systems, traction 

control, vent control, and safety systems. With the rise of new energy vehicles (NEVs), the size 

and complexity of the average car’s electrical system will only grow, as fully electric powertrains 

and related features such as regenerative braking become the norm. 

It is difficult to put a number on the exact silver content of the average car, especially given the 

wide range of vehicles available on the global market, representing a plethora of different price 

ranges and applications. An average ICE car may have as many as 40 individual contacts, while 

a high-range model with extra features will have up to 50. A hybrid car would contain a greater 

amount still, while a top-of-the-line NEV could have as much as double the amount of an average 

ICE car. Trucks and buses, given their use of additional features such as modular door control, 

additional brake and stability controls, and trailer connections, have an even higher number of 

contacts.  In addition, electric vehicles use copper busbars (often plated with silver or silver alloys) 

to connect battery modules or cells components in series or parallel, inverters and converters with 

silver-plated connectors, and various other components with silver-plated or silver-alloy contacts 

that are not found in traditional ICE vehicles.  
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While the average silver use in each electrical contact or component is generally tiny, when 

summed across the myriad electric components currently installed in vehicles, the aggregate silver 

demand is significant.  Automotive sales numbers are expected to rise overall, with CRU predicting 

global annual sales to be 26% higher than current levels by 2030, facilitated by higher incomes in 

developing regions. The continued electrification of automobiles, however – and not just in NEVs, 

but in all new cars – will cause silver demand to rise at a faster rate than this, reaching 148% of 

current levels by 2030. This implies that the approximate silver demand in electrical automotive 

applications will reach almost 70 million ounces in 2030, up from around 45 million ounces in 2017. 

Figure 21  Comparative silver use in automotive by powertrain type 

 

CRU, *excludes silver conductive pastes typically used in defogging/deicing applications; figures used in this chart are indexed 
values with a typical internal combustion engine vehicle (gasoline) as the base case 

Figure 22  Estimated silver consumption in auto electrical by powertrain type 

 

Data: CRU, SI, *excludes silver consumption in defogging applications (conductive pastes) 
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2.2. Inductively coupled power transfer 

ICPT works by passing a current through a coiled wire, creating an electromagnetic field that in 

turn induces a current into another coil. The electrical intensity of the field can be enhanced by 

using copper wire as the transmitting coil, while silver plating the receiving coil can reduce 

resistance and so further improve the efficiency of the transfer. 

Research into the technology’s use in wireless charging was first undertaken in earnest in 2006, 

although working models had been created before; the technology is therefore already 

commercially available and increasingly common, especially for the smaller-scale application of 

high-end mobile phone chargers. For electric vehicles, however, the technology is still rather niche, 

with commercially available options for domestic wireless chargers only offered by third parties, 

such as Plugless Power, although major car manufacturers such as Kia and BMW have tested 

prototypes. 

Although there are some problems associated with scaling inductive chargers to the level needed 

for BEVs, such as losses in efficiency and the need to precisely align the transmitting coil and 

receiving coil, these concerns have been greatly reduced as the technology matures. Efficiencies 

have improved from 40% in 2007 to 90% in 2016, and a series-parallel configuration on the 

receiving coil has been shown to charge with less precise alignments that would be typical in 

actual use. 

Current charging infrastructure can be broken down by power rating into three ‘tiers’, as shown in 

Table 1. These tiers vary significantly in application, with consumers typically having widely 

different habits in their day-to-day use. Because of this, it is worth briefly considering each tier 

separately when discerning how inductive charging technology might disrupt traditional charging 

markets. 
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Table 1  Overview of plug-in charging technology 

Classification Tier Current Power 
Public/ 

private 
Setting 

Charging 

time 

Silver intensity of an 

equivalent ICPT* 

Slow charger 

1 

AC 

≤ 3.7 kW Private Home 6-12 hours 27.1g 

2 
> 3.7 kW, 

≤ 22 kW 

Semi-

public 

Workplace 

On-street residential 

Apartment car parks 

2-6 hours 71.0g 

Public 

Public charging stations 

On-street non-residential 

Shopping centers 

Public car parks 

Hotels 

Airports 

Leisure centers 

Fast charger 3 DC 
> 22 kW, 

< 200 kW 
Public Public charging stations 

15-45 

minutes 
Not available 

Data: CRU, ORNL, Plugless Power 
* Estimates based off an assumed plating thickness of 4 microns. 

2.2.1. Tier 1 – domestic chargers 

As Figure 23 demonstrates, the clear majority of EV chargers, both now and in the future, are 

found in private garages and driveways. These low-wattage domestic chargers will continue to 

account for more than 80% of all charging points throughout the 2020s and represent a potential 

silver demand of 10.2 million ounces by 2030. 

ICPT chargers are already commercially available within this tier, with a number of manufacturers 

producing models that are able to compete with traditional domestic chargers in terms of technical 

Figure 23  Global number of chargers by tier 
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specifications. Plugless, for example, a market leader in inductive charging in the US, produces 

two models which can boast a continuous power output of 3.3kW and 7.2kW respectively. A similar 

market leader in plug-in charging infrastructure, Pod Point, offers models with similarly rated power 

outputs of 3.6 kW and 7 kW, as well as a 22kW model sold at a premium.  

Without further technological advances, there are few selling points to motivate a consumer to 

choose wireless charging in this category. The usual benefits of wireless charging do not apply to 

cars in the domestic context; though the owner of a wireless phone charger may find it helpful to 

be able to intermittently use the phone with ease while it is charging, by its very nature a car is 

rarely in use while parked. The convenience of owning a wireless charger is therefore limited to a 

few small benefits: they don’t pose a trip a shock hazard, and a consumer does not need to 

remember to plug and unplug their vehicle, or expend a few moments doing so. A domestic 

wireless charger would therefore have to be competitive in terms of price to have gain any 

noteworthy market share over traditional plug-in chargers. If this is to be done, however, significant 

reductions in cost will have to be made: the current price of a Plugless 3.6 kW charger, U.S.$5999, 

is more than 10 times the cost of a similarly rated plug-in charger. That being said, the technology 

is not without potential in the domestic market, and the benefits of hands-free charging are more 

likely to be felt when autonomous driving (or at least self-parking vehicles) become more 

conventional. In a future where an owner can hail his own vehicle and send it home when done, 

or otherwise park automatically, removing the need to plug in a charger manually becomes a much 

greater convenience. 

A technology such as this will always need to prove its added benefits are worth its inflated price, 

and although it is currently hard to justify, inductive charging may well have greater potential as 

time goes on. Prices are likely to drop should economies of scale be achieved, and a greater 

acceptance of self-parking vehicles could boost the value of having a wireless charging system; 

as the gap between price and added benefit narrows, wireless charging becomes more likely to 

make inroads into the market. Just as the electric vehicle market oversaw the price of lithium-ion 

battery production more than halving from 2010 to 2017, CRU expects the price of inductive 

charging to drop as well. 

2.2.2. Tier 2 – public slow chargers 

The most powerful inductive charger tested but not yet commercially available has a rating of 

20kW and an efficiency of 90%, which is comparable to slow chargers currently available on urban 

streets and in car parks. This was achieved by the U.S Department of Energy in 2016, and though 
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the technology is still in its nascence, it demonstrates that inductive charging can be used for 

public applications. 

It is somewhat easier to see how inductive charging may become the norm in this sector. Use 

would no doubt be more intermittent, with drivers ‘topping up’ in hour-long sessions while running 

errands. The charger could be fully integrated into a premium parking space, with the cost of 

electricity factored into the cost of parking, reducing the risk of vandalism or accidents. The capital 

cost would be shouldered by local councils or business owners, keen to support the technology 

either as a matter of policy or as a selling point. 

Though not as prevalent as Tier 1 chargers, representing 15% of the charger market by numbers, 

an inductive charger would nevertheless require greater silver loadings to enable a larger power 

rating, therefore representing as much as 7.1 million ounces of silver p/a by 2030. And although 

the costs would undoubtedly be much higher than plug-in chargers here as in the Tier 1 market, 

there are likely to be commercial organizations who would be willing to shoulder the cost in return 

for the prestige that being an early adopter of new technology can confer. For this reason, as well 

as the greater perceived benefits of this sector, it is likely that any great push towards reaching 

economies of scale will be sparked by demand here. 

2.2.3. Tier 3 – fast chargers and future in-road chargers 

Tier 3 plug-in chargers have a power rating of over 200 kW, allowing them to fully charge an EV 

in 15 minutes. This makes them an essential part of any large-scale charging infrastructure as 

they allow a car to travel long distances with a minimal amount of time spent on charging. 

Even though there are inductive chargers currently able to transmit 200 kW of power, they are not 

yet suited for use on cars. The intensity of the charging coil’s magnetic field is dependent on the 

coil’s radius and the number of turns, meaning the power capacity of a charging coil is limited by 

its size, and, the degree to which the receiving coil can capture the transferred energy is dependent 

on it being an optimal size in relation to the transmitting coil; because of this, it is not currently 

possible to make a 200 kW charger with a receiving coil small enough to fit onto an average 

passenger car. However, inductive charging technology lends itself to an application that would 

fulfill the same purpose of extending an electric car’s range: electrified roads, whereby a series of 

lower-power inductive chargers buried underneath a road would allow a car to charge while 

driving. This application is one that showcases best the advantage that inductive charging can 

offer over traditional plug-in charging – by removing the need for the vehicle to stop while charging, 

an inductive road effectively extends a vehicle’s range indefinitely. 
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This prospect has some extensive and important implications for the transport sector. Even the 

longest-ranged electric car, travelling at 80 km/h, must spend 30 minutes charging at a fast charger 

for every 7 hours driven. Cutting out the need to charge would therefore reduce long-distance 

journey times by 7% - a huge efficiency gain, and one that is particularly useful when applied to 

heavy-duty freight vehicles. Indeed, when paired with autonomous vehicle technology, it creates 

the possibility of a vehicle that can drive for days without stopping, and whose range is only limited 

by its own resistance to wear. 

The connection to the freight sector is key as it is an industry governed almost entirely by the twin 

needs to keep costs down and freight volume up. Therefore, unlike tiers 1 and 2, the successful 

penetration of ICPT into this sector is reliant not on it competing in cost with plug-in chargers, but 

on whether its potential is enough to not only enable the use of battery technology in heavy trucks, 

but also to offer savings in efficiency that outweigh initial costs of installation. This is a question 

currently being studied by many government bodies, such as the U.S Department of Energy (US 

DoE) and the European Commission’s FABRIC project (“feasibility analysis and development of 

on-road charging solutions for future electric vehicles”). 

There are still a number of issues that make this kind of application commercially unfeasible – the 

most pressing being the efficiency and speed with which an in-road charger could currently power 

a vehicle. Coils often require a precise alignment to impart charge, and while some designs of in-

road charger currently utilize large, meters-long rectangular coils which effectively extend the 

amount of space in which a receiving coil would be induced, the high speeds at which vehicles 

travel along long-distance motorways mitigate this advantage by limiting the amount of time spent 

over each individual coil.  

Consequently, current technology is only efficient enough for a small passenger vehicle with an 

energy efficiency of 15 kWh/100km to maintain its charge travelling at any speed. Figure 24 shows 

charging rates for chargers of various power ratings covering a kilometer of road, demonstrating 

how the current highest rated charging technology (20 kW) can maintain a car’s charge up to 120 

km/h. This is consistent with test results from both the USDE and FABRIC. Should the USDE’s 

target of a 50 kW in-road charger be achieved, it would represent a significant gain for passenger 

vehicles; however, it would still not be enough to power a Tesla semi-truck at its current predicted 

efficiency of 124 kWh/100km (<2 kWh/mi) – although a road with a rating of 200 kW, for which a 

Tesla truck would be able to accommodate a sufficiently large receiver coil, would be able to impart 

a momentous amount of charge. 
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The limiting factor, then, is that the technology is not yet significantly advanced to be feasible in 

the area it would most benefit. Moreover, the sheer amount of infrastructure needed to facilitate 

this level of charging makes it currently uneconomical for use on passenger vehicles. As it stands, 

two in every three kilometers of road would need to be electrified to maintain the charge of a car 

travelling at 80 km/h; even if the USDE achieves its target of 50 kW, EVs will require a 25% 

electrified road to maintain charge. In order to compete with a Tier 3 fast charger, this technology 

must be able to extend a vehicle’s range by the same amount – that is, double it. In a Nissan Leaf 

with a range of 270 km, this would require a total of 180 km of 20 kW road or 70 km of 50 kW road.  

The drawback of such a build is immediately apparent. Not only would such a road require a 

monumental upheaval of current transport infrastructure, requiring the rebuilding of large stretches 

of some of the world’s busiest roads; it would also incur significant capital costs. The cost of 

installing a single Tier 3 charging station is estimated to be U.S.$15,000; assuming a bank of 12 

chargers is needed at a busy motorway charging station, the final cost of U.S.$180,000 is still 

significantly lower than the cost of an in-road inductively coupled power transfer system at 

approximately U.S.$350,000/mile. Despite the high costs, a few municipalities have announced 

the rollout of in-road power transfer systems, most of which were publicly funded.  For example, 

Sweden recently inaugurated its first ‘electric road’, a 1.2 mile stretch of highway from Stockholm 

Figure 24  Estimated charging rates for various charger power ratings 

 

Data: CRU, USDE 
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to a regional airport that charges users for the quantity of electricity consumed while moving.  

Although the total cost exceeded U.S.$2 million, the proof of concept showed that public regulators 

can devise a way to charge users for electricity while on the move, similar to automated tolls on 

many interstates.   

That being said, in commercial freight and public transport sectors, the potential benefits of in-road 

charging may thoroughly outweigh the costs, especially should prices come down. In these 

industries, high-power inductive charging has a dual advantage, dealing with both vehicles large 

enough to mount high-power receiver coils onto and industries where maintaining speed and 

efficiency is key to cost reductions. The maximum potential benefit may only be realized when 

autonomous driving is taken into account: a vehicle which could effectively travel indefinitely, 

without needing to stop for either refueling or for the needs of a driver, would truly revolutionize 

the trucking industry by slashing both the time needed to move freight and the time between 

contracts.  

For the public transport industry, high-powered inductive chargers are already a reality, with 

Momentum Dynamics being commissioned to install a 200kW system in Wenatchee, Washington 

in April 2018 for the city’s public battery-electric bus fleet. As mentioned earlier, these fast-charging 

systems are currently most amenable to the electric bus market, where the long-term benefits of 

providing opportunistic charging for vehicles on predetermined daily routes overweighs initial 

capital investment costs.  This will likely be joined by further installations elsewhere, as the benefit 

of cutting out the need for midday charges may prove to be enough of a draw for public transit 

operators. 

It will be a while before this technology becomes cost-effective enough for governments to 

consider mainstream implementation; nonetheless, the potential growth in demand for silver in 

this sector is huge.  As such, a system would require not only a widespread infrastructure but also 

high-power coils requiring greater silver loadings. 

2.2.4. Inductive charging conclusions  

The technology behind inductive power transfer has come forward in leaps and bounds in the past 

decade, turning a once-impractical technology into a method of transferring power that is quick, 

efficient, and easy. This is reflected in its newfound commercialization, with inductive chargers 

carrying enough of a sense of technological advancement and consumer convenience to generate 

sales despite their considerable premium at present.  
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For some, ICPT chargers for automotive applications remain an expensive gimmick, but it would 

not be the first time an oft-disparaged technology became successful. There are some definite 

benefits to the technology which could revolutionize certain areas of the transport sector in terms 

of both profitability and convenience, but a substantial reduction in price is needed before these 

areas can be properly explored. If prices do plummet, however, the transport sector could well 

provide a silver lining when set against a lack of growth in silver consumption in the energy sector. 

Conclusions 

As this report demonstrates, silver has played and will continue to play an integral role in the future 

viability of green energy generation and mobility. Although thrifting in solar photovoltaic cell 

manufacturing may present headwinds for industrial silver demand in renewables generation, the 

potential for greater silver consumption in the rapidly growing electric vehicle market offers new 

market opportunities for industrial silver use.  In particular, the growing need for power-efficient, 

high-voltage wiring harnesses in battery electric vehicles and a gradually rising interest in wireless 

charging technology and infrastructure present significant potential for silver consumption. 

Ultimately, as the world increasingly transitions from an energy market dominated by 

nonrenewable combustibles to one powered by cleaner electricity, silver’s unique electrical and 

mechanical properties will broaden the precious metal’s already wide range of green technology 

applications. 

 

 

 

 

 

Authors: 

Alex Laugharne 

Principal Consultant, New York 

alex.laugharne@crugroup.com  

+1 646-628-2515 

Ibrahim Yucel 

Senior Consultant, Pittsburgh 

ibrahim.yucel@crugroup.com 

+1 724-759-7862 

 

mailto:alex.laugharne@crugroup.com
mailto:ibrahim.yucel@crugroup.com

